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ASSESSMENT OF THE RUIN PROBABILITIES  

  

 

Abstract:   In this paper, we analyze the ruin probability for some risk 

models, which is the probability that an insurer will face ruin in finite time when the 

insurer starts with initial reserve and is subjected to independent and identically 

distributed claims over time. The ideal is as we are able to come up with closed form 

solutions for the infinite horizon ruin probability and the finite horizon ruin 

probability. But, the cases where this is possible are few; therefore we must make 

approximations of ruin probability. In this paper, we insist on the discrete time 

insurance model and on the diffusion approximation and so-called “corrected 

diffusion approximation (CDA)”. We analyze the ruin probability with respect to: the 

parameters of the individual claim distribution and the intensity parameter of the 

number of claims process. Ruin theory with debit and credit interest has received 

considerable attention in recent years. In this line, we consider a perturbed risk model 

in which a current premium rate will be adjusted in any period (usually year) in which 

there are no losses and any surplus available at the beginning of the period is 

reinvested. Also, we analyze and the inverse problem: to determine the initial reserve 

when it is given the ruin probability.  

Keywords: Brownian motion, corrected diffusion approximation, risk process, 

ruin probability, surplus process.  
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1. Introduction  
The actuarial risk model has two main components: one characterizing the 

frequency of events and another describing the size (or severity) of gain or loss 

resulting from the occurrence of an event. The stochastic nature of both, the incidence 

and severity of claims, has an essential role for the set up of a realistic model. In 
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examining the nature of the risk associated with a portfolio of business, it is often of 

interest to assess how the portfolio may be expected to perform over an extended 

period of time. One approach concerns the use of ruin theory. Ruin theory is concerned 

with the excess of the income (with respect to a portfolio of business) over the outgo, 

or claims paid. This quantity, referred to as insurer’s surplus, varies in time. 

Specifically, ruin is said to occur if the insurer’s surplus reaches a specified lower 

bound. One measure of risk is the probability of a suchlike event, clearly reflecting the 

volatility inherent in the business. This probability is called ruin probability. It can 

serve as a useful tool in long range planning for the use of insurer’s funds. The 

company receives a certain amount of premium to cover its liabilities. The company is 

assumed to have a certain initial capital (risk reserve) at its disposal. One important 

problem in risk theory is to investigate the ruin probability, i.e. the probability that the 

risk business ever becomes negative. The ideal is as we are able to come up with 

closed form solutions for the infinite horizon ruin probability and the finite horizon 

ruin probability. But, the cases where this is possible are few; therefore we must make 

approximations of ruin probability.  There are various ways to model aggregate claims 

distributions, the time evolution of the reserves of an insurance company and its claim 

surplus process and to define the probability of ruin. The idea behind the diffusion 

approximation is to first approximate the claim surplus process by a Brownian motion 

with drift by matching the two first moments. Since Brownian motion is skip-free, the 

idea to replace the risk process by a Brownian motion ignores the presence of the 

overshoot and other things. In this paper, we insist on ruin probability of discrete-time 

surplus process, and on the diffusion approximations of ruin probability.  

 In the classical risk model, the premium rate c is a fixed constant that satisfies a 

positive security loading condition, namely, > 0c , and the premium rate is irrespective 

of the claim experience. However, the premium rate in practice, especially for auto-

insurances, is often adjusted according to the claim experience. The assumption that 

the premium rate keeps constant is very restrictive in practice. The models from ruin 

theory with debit and credit interest and with perturbed risk have received considerable 

attention in recent years. Also, multi-dimensional risk theory has gained a lot of 

attention in the past few years mainly due to the complexity of the problems and the 

lack of closed-form results even under very basic model assumptions.  

One of the main questions relating to the operation of an insurance company is the 

calculation of the probability of ruin, and the probability of ruin before time T. The 

theory of martingales provides a quick way of calculating the risk of an insurance 

company. If  : 1nX n   be a sequence of independent and identically distributed 

random variables, let  : 0nS S n   be its associated random walk (so that 0 0S   
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and 1n nS X X    for 1n  ), and suppose that S with drift  . It is interesting to 

develop the high accuracy approximations to the distribution of the maximum random 

variable  max : 0nM S n  . For 0u  ,     M u u    , where 

   inf 1: nu n S u    , so that computing the tail of M is equivalent to computing 

a level crossing probability for the random walk S. In insurance risk theory, 

  P u    is the probability that an insurer will face ruin in finite time when the 

insurer starts with initial reserve u and is subjected to independent and identically 

distributed claims over time. One important approximation holds as 0 . This 

asymptotic regime corresponds in risk theory to the setting in which the safety loading 

is small. In this case, the approximation      2exp 2 /P M u u       is valid, 

where  2
1Var X  . Because the right hand side is the exact value of the level 

crossing probability for the natural Brownian approximation to the random walk S, it is 

often called the diffusion approximation to the distribution of M.  

Also, in this paper, we consider a time dependent risk model for the surplus of an 

insurer, in which the current premium will be adjusted after a year without losses and 

the available amount of money is reinvested. At the same time, we also want to derive 

an equation satisfied by the survival probability and to determine the risk reserve. 

 The remainder of this paper is organized as follows. A brief literature review is 

given in Section 2. Section 3 presents a introduction in the models of surplus process 

and more detailed the assessment of the ruin probabilities. Finally, in Section 4, we 

exemplify our methods with numerical results starting our models from data of annual 

report on 2012 of two Romanian Insurance Company1 and we present the paper 

concludes with some comments. 

  

2. Literature Review 
 

   Recently, several new risk models have been proposed in the specialized literature, 

in which the premium income of an insurer is uncertain and depends on some random 

components in the surplus of an insurer. For example, Dufresne and Gerber (1991) 

added a diffusion to the classical compound Poisson surplus process. The diffusion 

                                                           
1 ABC Asigurări Reasigurări SA (ABCAR) and SC Generali România Asigurare Reasigurare 

SA (GRAR) 
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describes an uncertainty of the aggregate premium income or an additional uncertainty 

to the aggregate claims. A time-dependent premium risk model can be found in 

Asmussen (2000), in which premium rates are adjusted continuously according to the 

current level of an insurer's surplus. Albrecher and Asmussen (2006) investigated an 

adaptive premium that is dynamically adjusted according to the overall claim 

experience. In addition, the dependence between other components in risk models was 

also studied. For instance, Albrecher and Boxma (2004) considered a dependent risk 

model in which the Poisson arrival rate of the next claim is determined by the previous 

claim size. They extended their model to a Markov-dependent risk model in which 

both arrival rates and claim size distributions are determined by the state of an 

underlying continuous-time of Markov chain type. Furthermore, Albrecher and 

Teugels (2006) have studied the risk models with dependence between inter-claim 

times and claim sizes. Significant results have been achieved in models in which 

claims occur according to a Poisson process; see for e.g. Cai (2007), Zhu and Yang 

(2008), Mitric and Sendova (2010), Asmussen and Albrecher (2010), Mitric, Bădescu 

and Stanford (2012) and the references therein. Meanwhile, the renewal risk model 

under such assumptions has been studied much less frequently in the literature during 

this period. One notable contribution is Konstantinides et al. (2010), where the authors 

present asymptotic results for the infinite time absolute ruin probability. The main 

focus of the paper of Mitric, Bădescu and Stanford (2012) was the analysis of the 

Gerber–Shiu discounted penalty function (Gerber and Shiu, 1998), starting from a 

general non-renewal risk model with constant force of interest. They presented a 

general methodology that leads to a tractable analytical solution for the Gerber–Shiu 

function (with a penalty that depends on the deficit only), with coefficients that are 

obtained in a recursive fashion. Moreover, they obtained closed form solutions for the 

absolute ruin probabilities and the deficit at the absolute ruin, extending the results 

obtained under the classical case with exponential claim amounts. 

For the diffusion approximation, the idea to replace the risk process by a Brownian 

motion ignores the presence of the overshoot and other things. Siegmund (1979) 

proposed a so-called corrected diffusion approximation (CDA) that reflects 

information in the increment distribution beyond the mean and variance. The objective 

of the corrected diffusion approximation is to take this and other deficits into 

consideration. The set-up is the exponential family of compound risk processes with 

parameters. Blanchet and Glynn (2006) developed this method to the full asymptotic 

expansion initiated by Siegmund.  

   Fu K. A. and Ng C.Y.A. (2014) consider a continuous-time renewal risk model, in 

which the claim sizes and inter-arrival times form a sequence of independent and 

identically distributed random pairs, with each pair obeying a dependence structure. 

They suppose that the surplus is invested in a portfolio whose return follows a Lévy 
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process. When the claim-size distribution is dominatedly-varying tailed, they obtained 

asymptotic estimates for the finite- and infinite horizon ruin probabilities.  

  

3. Surplus Process and Assessment of the Ruin Probabilities  

     We are interested in the surplus process   , 0U t t   in continuous-time (or its 

discrete-time version, , 0,1,tU t  ), which measures the surplus of the portfolio at 

time t. We begin at time zero with  0U u  (or in discrete case 0U u ), the initial 

surplus (initial reserve, risk reserve). The surplus at time t is 

       U t u P t A t S t     (or in discrete-time version t t t tU u P A S    ), 

where   , 0P t t 
 
 (in discrete time  , 0,1,tP t  ) is the premium process which 

measures all premiums collected up to time t,   , 0S t t   (in discrete time 

 , 0,1,tS t  )  is the loss process, which measures all losses paid up to time t, and 

  , 0A t t   (in discrete time  , 0,1,tA t  ) is the earning process, which 

measures all earnings of investment income up to time t. We make the following 

assumption:  P t  (or tP ) may depend on  S r  (or rS ) for r t  (for example, 

dividends based on favorable past loss experience may reduce the current premium). 

 

Definition 3.1 The continuous-time, finite-horizon survival probability is given by  

      , 0 for all 0 0u P U t t U u       , the continuous-time, infinite-

horizon survival probability is given by       0 for all 0 0u P U t t U u    

, the discrete-time, finite-horizon survival probability is given by 

   0, 0 for all 0,1, ,tu P U t U u      , the discrete-time, infinite-horizon 

survival probability is given by    00 for all 0,1,tu P U t U u     , the 

continuous-time, finite-horizon ruin probability is given by    , 1 ,u u    , the 

continuous-time, infinite-horizon ruin probability is given by    1u u   , the 
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discrete-time, finite-horizon ruin probability is given by    , 1 ,u u    , and 

the discrete-time, infinite-horizon ruin probability is given by    1u u   .  

A)  The general mathematical model of an insurance risk in continuous-time is 

composed of the following objects: 

a) A sequence  
1,2,3,i i

X


 of independent and identically distributed random 

variables, having the common distribution function F and a finite mean m. The random 

variable (r.v.)
 iX  is the cost of the ith individual claim. 

b) The stochastic process   ; 0N N t t  ,  N t  is the number of claims paid by 

the company in the time interval 0, t . The counting process N and the sequence 

 iX  are independent objects. 

The total amount of claims in  0, t  is  

( )

1

( )
N t

i

i

S t X


 .              (1) 

The risk process   ; 0Y Y t t   is defined by    Y t c t S t   ,          (2) 

where 0c   is the constant premium rate per unit time. 

Thus, the insurer’s surplus at time t is      U t u Y t  ,            (3) 

where  0u U  is the initial capital. Also   ; 0U t t   is the risk process.  

When the premium rate is not a constant, we obtain a generalized model. Thus, if the 

premium at the moment t is function  c t , then      
0

t
Y t c x dx S t             (4)  

We denote , 1,2,3,k
k im E X k    ., and   X

XM E e  
 

 the 

moment generating function (mgf) of the random variable X. Note that 1m m .  

 We consider that there exists a constant   (average amount of claim per unit 

time) such that   

 
. .

1

1
N t

a s
i t

i

X
t






 .                                                           (5) 

We define the safety loading   as the relative amount by which the premium 

rate c exceeds ,  thus  
c 





 .                 (6) 

In the classical risk model, the process N is a homogeneous Poisson process with 

intensity   (arrival rate), so that the surplus process of an insurer is described by   
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( )

1
( )

N t

ii
U t u c t X


           (7) 

 We will use the mean value principle in order to compute the net premiums, thus 

                                  
 

(1 )c m     .                                                        (8) 

In the continuous-time case, we have the following: 

 

   Definition 3.2  The ruin moment T is     inf 0 0T t U t   .         (9) 

 

   Definition 3.3  The ruin probability with respect to initial reserve u and the safety 

loading   is              
0

, inf 0 0 ,
t

u P U t U u g c 


     .        (10) 

  The ruin probability as a function of initial reserve is 

                       
0

inf 0 0
t

u P U t U u


               (11) 

In this case we have the following propositions. 

 

Proposition 3.1. Assume that (5) holds. 

i) If 0  , then   
0

sup
t

S t c t
 

     a.s. and hence   1u   for all u. 

ii) If 0  , then   
0

sup
t

S t c t
 

     a.s. and hence   1u   for all sufficiently 

large u. 

Let      
0

1r xh r e dF x


   and    1g m      . The adjustment coefficient 

(or Lundberg exponent) R is the smallest positive solution of the equation: 

                    0h r c r     .  

                                                                       (12) 

Proposition 3.2. If the adjustment coefficient R exists, then: 

a) the ruin probability is     
1

,
R SR uu e E e





     

 
,       (13) 

where ( ) ( ( ) ))S C      represents the severity of the loss at the moment of 

ruin; 
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b) (Cramer’s asymptotic ruin formula) 

                                                  ueCu uR ,~, ,    (14) 

where 
   ' 1X

m
C

M R m








  
. 

 

Corollary: If the individual claim follows an exponential distribution with 

parameter  , then  
 

 
,

u
g

u e
g







 

 
   
   


. 

We will focus on an approach of estimating a risk process and the ruin 

probability using the Brownian motion. In some particular cases, it is obtained the 

diffusion approximation, which can be derived from approximating the risk process 

with a Wiener process (Brownian motion) with drift. It regards the way the surplus 

process   
t

Y t  based on the compound Poisson process is related to the Wiener 

process. Take a limit of the process   
t

Y t  as the expected number of downward 

jumps becomes large and simultaneously the size of the jumps becomes small (i.e. 

  and 0  , where the jump size is X V  , so that V has fixed mean and 

variance). Because the Wiener process with drift is characterized by the infinitesimal 

mean   and infinitesimal variance 
2 , we impose the mean and variance functions to 

be the same for both processes. Thus, c m     and 
2

2 m  . The mgf of  Y t  

is 
        exp 1XY t

M t c M          . Therefore 

    
2

2

0
lim exp

2
Y t

M t t



   



 
      

 
, which is the mgf of the normal 

distribution  ttN 2, . Let   , 0W t t   denote the Wiener process with mean 

function t   and variance function t2 . We consider the probability of ruin in a 

time interval  0, . Let   0inf 0tT t u W t   . The probability of ruin before   is 

      
0

, inf
t

u P T P W t u


 
 

      . 
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Proposition 3.3.  The probability of ruin before   is  

  
2

2

,
uu u

u e




   


   

       
         

    

.    (15) 

Letting   , the ultimate ruin probability is  
2

2

22
mu

u
mu e e







  

   (i.e. the 

diffusion approximation). 

Corollary: The probability density function of the time length until ruin is given by 

 
 

2

2

3

22 , 0
2

u

T

u
f e

 

   
 

 


   


. 

Hence to obtain the expected time until ruin, given that it occurs, the idea behind 

the diffusion approximation is to first approximate the claim surplus process by a 

Brownian motion with drift by matching the two first moments. Consider that the 

claim sizes are independent and identically distributed non-negative random variables 

with cumulative distribution function F and finite mean m and finite variance 
2 .  

Thus the standard diffusion approximation is 

                  
2 2

, exp 2DA

m
u u u

m
 



 
        

 
                                  (16) 

 For light-tailed random walk problems Siegmund (1979) derived a correction which 

was adapted to ruin probabilities by Asmussen and Binswanger (1997). An alternative 

covering also certain heavy-tailed cases was given of Hogan (1986). The result will be 

an approximation of the type 

   
2 2

1 3 1 3 1

3 2
22 2

4 2
, 1 exp 2

3 3
CDA

u m m m m m
u u u

mm m

 
 

         
             

  
(17) 

when 5m   , where im  is the i-th moment of F (evident 1m m ). It is so-called 

corrected diffusion approximation of the ruin probability. When F is the Uniform(0,b) 

distribution function we obtain: 

    

 , exp 3DA

u
u

b
 

 
     

 
                       (18) 
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      
29 3

, 1 exp 3
4 4

CDA

u u
u

b b

 
 

     
          

   
                          (19) 

In this formula we can normalize b.  

Another risk model is the Sparre Andersen model. This satisfies the following 

hypotheses: 

i) The claim sizes 1 2, ,...   form a sequence of i.i.d. random variables with 

common distribution function B that has a finite mean 0  ; 

ii) Occurrence times 1 2, ,...T T  are independent of , 1n n  , hence inter-

occurrence times 1 1,T   1, 2n n nT T n    , are i.i.d. random variables 

independent of , 1n n  . We assume that 0U u  is an initial risk reserve, and that 

the insurance company receives a sum that equals c per unit time deterministically (i.e. 

the intensity of the gross risk premium 0c  ).  

Let nU  be the level of the risk process just after the nth payoff. Therefore, we have

1 , 1n n n nU U c n     . Let , 1n n nY c n    . By G we denote a 

distribution function (d.f.) of a random variable 1Y , then      
0

G u B u y dF y


  , 

where F is the d.f. of a random variable 1c  .  Let 
 1 1

1

E c

E






 
  be a relative 

safety loading. We assume 0   . We denote 0 0S  , 
1

, 1
n

n kk
S Y n


  , and 

the ruin moment    inf 0: nu n S u    . Then,     ,u n P u n    is the 

probability of ruin before the nth payoff, and     u P u     is the probability 

of ruin in infinite time. Let 0supn nM S . In this case M is finite almost surely. Thus, 

we have    u P M u    and    , max k
k n

u n P S u


   . We denote by IG  the 

integrated tail distribution of G, i.e.        
1

0 0
, 0

x

IG x G y dy G y dy x



    , 

where 1G G  . If IG  belongs to the sub exponential class S, then the 

approximation for the probability of ruin in infinite time is given by 

     
1

~
u

u G y dy 


    as u.   
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B)     We consider a discrete-time insurance model. 

   Let the increment in the surplus process in period (usually year) t be defined as 

t t t tW P A S   , where: tP  is the premium collected in the tth period, tS  is the losses 

paid in the tth period, tA  is any cash flow other than the premium and the payment of 

losses, the most significant cash flow is the earning of investment income on the 

surplus available at the beginning of the period. The surplus at the end of the tth period 

is then       
 

 1 1

t

t t t t t j j jj
U U P A S u P A S 

        .                   (20) 

Let the assumption that, given 1tU  , the random variable tW  depends only upon 1tU   

and not upon any other previous experience.  

   For the discrete-time insurance model, we evaluate the ruin probability using the 

method of convolutions. The calculation of ruin probability 

   0, 0tu t P U U u      is recursively, using distribution of tU .  Suppose that 

we obtained the discrete probability function (pf) of nonnegative surplus
  1tU  : 

   1

1 , 1,2, ,
t

j t jf P U u j n


    where 0,ju j  . Then the ruin probability is 

   1 0, 1 0tu t P U U u     . Let  , , 1j k t j k t jg P W w U u   . Then to 

obtain                     

,

1

,
1 0

, , 1
j k j

n
t

j k j
j w u

u t u t g f


  

                          (21) 

and

  

   

,

1

,
1 j k j

n
t

t j k j
j w u a

P U a g f


  

    .  

We shall use 



n

i

it XS
1

, where n is the number of insurance contracts and iX  is 

claim of contract i. For tS  we shall use the bounds i
ni

Xnsm



1
min  and 

i
ni

XnSM



1
max . In particular case, when 









 pp

S
X

1

0
: , we have 













nn pp

Sn
sm

1

0
:  and 

    











nn

pp

Sn
SM

111

0
: . 
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Here, we analyze the inverse problem: to determine the initial reserve when it 

is given the ruin probability. The following notations will be used: u - the risk reserve, 
minu  - the minimum reserve risk, α - the accepted probability of ruin,   - the safety 

loading factor of the risk premium, Xi, i=1,2,... - the independent and identical 

distributed random variables describing the claims or losses, with expectation E(X)=m 

and variance Var(X)=σ2, n - the number of insurance contracts, 
1

n

n ii
S X


  is the 

aggregate demand or claim. Calculating the risk premium on the basis of the mean 

value principle, the premium income or revenue PRIM is  1PRIM m n    . The 

condition the accepted ruin probability should fulfill is: 

 

   nP S PRIM u    .     (22) 

As    n nS m n m n u S m n m n u             , using Chebyshev’s 

inequality, we get:   
 

2

2n

n
P S m n m n u

m n u


      

  
             (23) 

From (22) and (23), it follows that: 

n
u m n   


    and    

min σCheb

n
u m n


     .                  (24) 

From the non-negativity condition of the reserve, we obtain an upper bound of the load 

factor   
m n





 

. As well, we have: 

2
minmax

4
Cheb

n
u

m



 


 
,       (25) 

Let us denote n
n

S n m
Z

n

 



, then, using (22), we obtain 

1n

n m u
P Z

n






   
   

 
 and from the Central Limit Theorem (CLT), we get: 

1u z n m n           and    
min

1CLTu z n m n         (26) 

where 1z  is the cuantile of order 1  of the standard normal distribution, 

 1 1z    . Here, we can use the main result of Schulte (2012) that the volume 

of the Poisson-Voronoi approximation behaves asymptotically like a Gaussian random 
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variable if the intensity of the Poisson point process goes to infinity. An alternative 

approach would be to apply the underlying general central limit theorem  directly to 

the infinite Wiener–Itô chaos expansion, which gives a sum of an infinite number of 

expected values of products of multiple Wiener–Itô integrals as an upper bound.  

 Similarly as above, we obtained an upper bound of the load factor: 1z

m n


 



.  

We also have: 

2 2
min 1max

4
CLT

n

z
u

m







 

,     (27) 

4. Numerical illustration and conclusions 

  From 2012 Annual Report of Romanian Insurance Company (GRAR) we observe 

that exist insurance policies which produce the ruin: gross written premiums for RCA 

are 66,991,572 lei, but then gross indemnity payments for RCA are 123,099,067 lei, 

however gross written premiums for fire policies are 96,961,352 lei and gross 

indemnity payments for them are 13,909,967 lei. 

We give a first scenario for the discrete-time model. Suppose that annual losses 

can assume the values 0, 2, 4, 8, and 10 monetary units (m.u.), with probabilities 0.3, 

0.3, 0.2, 0.1, and 0.1, respectively and losses are paid at the end of the year. Further 

suppose that the initial surplus is 5 m.u., and a premium of 3 m.u. is collected at the 

beginning of each year. Interest is earned at 4% on any surplus available at the 

beginning of the year. In addition, a rebate of 0.5 u.m. is given in any year in which 

there are no losses. We want to determine the ruin probability at the end of each of the 

first three years. We using formula (21), the obtained results are gived in Table 1. 

 

Table 1. The surplus process and the ruin probabilities   

1tU   

(m.u.) 

 1t

jf


 

 ,1 ,1,j jw g

 

 0;0.3  

 ,2 ,2,j jw g

 

 2;0.3  

 ,3 ,3,j jw g

 

 4;0.2  

 ,4 ,4,j jw g

 

 8;0.1  

 ,5 ,5,j jw g

 

 10;0.1  

5 1 (7.82;0.3) (6.32;0.3) (4.32;0.2) (0,32;0.1) (<0;0.1) 

 5,1 0.1   
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7.82 0.3 (10.7528; 

0.09) 

(9.2528; 

0.09) 

(7.2528; 

0.06) 

(3.2528; 

0.03) 

(1.2528; 

0.03) 

6.32 0.3 (9.1928; 

0.09) 

(7.6928; 

0.09) 

(5.6928; 

0.06) 

(1.6928; 

0.03) 

(<0;0.03) 

4.32 0.2 (7.1128; 

0.06) 

(5.6128; 

0.06) 

(3.6128; 

0.04) 

(<0;0.02) (<0;0.02) 

0.32 0.1 (2.9528; 

0.03) 

(1.4528; 

0.03) 

(<0;0.02) (<0;0.01) (<0;0.01) 

 5, 2 0.21   

10.752

8 
0.09 

(13.802912; 

0.027) 

(12.302912; 

0.027) 

(10.302912; 

0.018) 

(6.302912; 

0.009) 

(4.302912; 

0.009) 

9.2528 0.09 
(12.242912; 

0.027) 

(10.742912; 

0.027) 

(8.742912; 

0.018) 

(4.742912; 

0.009) 

(2.742912; 

0.009) 

7.2528 0.06 
(10.162912; 

0.018) 

(8.662912; 

0.018) 

(6.662912; 

0.012) 

(2.662912; 

0.006) 

(0.662912; 

0.006) 

3.2528 0.03 
(6.002912; 

0.009) 

(4.502912; 

0.009) 

(2.502912; 

0.006) 
(<0;0.003) (<0;0.003) 

1.2528 0.03 
(3.922912; 

0.009) 

(2.422912; 

0.009) 

(0.422912; 

0.006) 
(<0;0.003) (<0;0.003) 

9.1928 0.09 
(12.180512; 

0.027) 

(10.680512; 

0.027) 

(8.680512; 

0.018) 

(4.680512; 

0.009) 

(2.680512; 

0.009) 

7.6928 0.09 
(10.620512; 

0.027) 

(9.120512; 

0.027) 

(7.120512; 

0.018) 

(3.120512; 

0.009) 

(1.120512; 

0.009) 

5.6928 0.06 
(8.540512; 

0.018) 

(7.040512; 

0.018) 

(5.040512; 

0.012) 

(1.040512; 

0.006) 
(<0;0.006) 

1.6928 0.03 
(4.380512; 

0.009) 

(2.880512; 

0.009) 

(0.880512; 

0.006) 

(<0;0.003) (<0;0.003) 

7.1128 0.06 
(10.017312; 

0.018) 

(8.517312; 

0.018) 

(6.517312; 

0.012) 

(2.517312; 

0.006) 

(0.517312; 

0.006) 
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5.6128 0.06 
(8.457312; 

0.018) 

(6.957312; 

0.018) 

(4.957312; 

0.012) 

(0.957312; 

0.006) 
(<0;0.006) 

3.6128 0.04 
(6.377312; 

0.012) 

(4.877312; 

0.012) 

(2.877312; 

0.008) 
(<0;0.004) (<0;0.004) 

2.9528 0.03 
(5.690912; 

0.009) 

(4.190912; 

0.009) 

(2.190912; 

0.006) 
(<0;0.003) (<0;0.003) 

1.4528 0.03 
(4.130912; 

0.009) 

(2.630912; 

0.009) 

(0.630912; 

0.006) 
(<0;0.003) (<0;0.003) 

 5, 3 0.26   

 
For second scenario, we suppose ten policies with annual loss can assume the 

value 0.2 m.u. with probability 0.6, and loss is paid at the end of the year. Further 

suppose that the initial surplus is 1 m.u., and a premium of 0.5 m.u. is collected at the 

beginning of each year. Interest is earned at 4% on any surplus available at the 

beginning of the year. In addition, a rebate of 0.1 m.u. is given in any year in which 

there is no loss. We determine the down border of ruin probability ( db ) at the end 

of each of the first four years. Using sm we obtained the results in Table 2. 

 

Table 2. The down border of the ruin probabilities 

 

1tU   

(m.u.) 

 1t

jf


  ,1 ,1,j jw g  

(0;0.993953383) 

 ,2 ,2,j jw g  

(2;0.006046617) 

1 1 (1.56;0.993953383) (<0;0.006046617) 

  006046617.01,1 db  

1.56 0.993953383 (2.0384;0.987943327) (0.00384;0.006010055) 

  006046617.02,1 db   

2.0384 0.987943327 (2.535936;0.981969612) (0.535936;0.005973714) 

0.0384 0.006010055 (0.559936;0.005973714) (<0;0.00003634) 

  006082957.03,1 db   

2.535936 0.981969612 (3.05337344; 

0.976032017) 

(1.05337344; 

0.005937594) 



 

 

 

 

 

 

 

 

Paul Tanasescu, Iulian Mircea 

____________________________________________________________________ 

0.535936 0.005973714 (1.07737344; 

0.005937593) 

(<0;0.00003612) 

0.559936 0.005973714 (0.99833344; 

0.005937593) 

(<0;0.00003612) 

  006155198.04,1 db   

 
 Secondly, we suppose that in continuous-time risk model F is Uniform(0,1) 

distribution function. Using formulae (18)-(19) we obtained values by a process of 

approximation for ruin probabilities. We give these values2 in Table 3, Table 4 and 

Figure 1. 

 

Table 3. The diffusion approximations  ,DA u   

u\  0.05 0.10 0.20 0.30 

1 0.860708 0.740818 0.548812 0.406570 

2 0.740818 0.548812 0.301194 0.165299 

5 0.472367 0.223130 0.049787 0.011109 

10 0.223130 0.049787 0.002479 0.000123 

15 0.105399 0.011109 0.000123 0.000001 

20 0.049787 0.002479 0.000006 81.5 10  

 
 

 

 

Table 4. The corrected diffusion approximations  ,CDA u   

u\  0.05 0.10 0.20 0.30 

1 0.833273 0.701925 0.515883 0.397422 

2 0.721372 0.532348 0.310230 0.195053 

5 0.467939 0.231497 0.064723 0.019857 

10 0.227314 0.057255 0.004338 0.000344 

15 0.110340 0.014025 0.000271 0.000005 

20 0.053521 0.003409 0.000016 70.7 10  

 

                                                           
2 Initial reserve u in monetary units 
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Figure 1. Diffusion approximations  ,DA u   and  ,CDA u    

 

Thirdly, we determine the initial reserve for given ruin probability  . For this, 

we use formulae (24) and (26).  Let us consider the individual loss described by the 

discrete random variable 
0

:i

S
X

q p

 
 
 

, where 0.03p  . We suppose that the number 

of insurance contracts is 6400n  .   The values in Table 5 show that for probability 

of ruin within an accepted domain, the amount of reserves obtained by Chebyshev’s 

inequality are much higher than those obtained by the CLT, tens  of times higher. 
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Table 5. The amount of the minimum reserves 

 

  
S 

(m.u.) 
  

 min
CLTu   

(m.u.) 

min
Cebu  

(m.u.) 
0.005 1 0.05 25.5409 183.3972 

0.005 1 0.10 15.9409 173,7972 

0.005 2 0.05 51.0814 366.7943 

0.005 2 0.10 31.8818 347.5943 

0.01 1 0.05 22.1292 126.8696 

0.01 1 0.10 12.5218 117.2696 

0.01 2 0.05 44.2584 253.7392 

0.01 2 0.10 25.0584 234.5392 

 

     We remark that: i) In the case there is no charge of safety loading ( =0), the 

reserve determined either by Chebyshev’s inequality or by CLT is unbounded relative 

to the number claims. 

ii) The ratio between the maximum of minimum reserves equals the ratio between the 

maximum number of claims and depends only on the ruin probability: 

  
min

min 2
1

max 1

max

Che

CLT

u
ratio

u z 


 

 


. 

There are applications for which the diffusion approximation delivers poor results, 

therefore proposed a corrected diffusion approximation that reflects information in the 

increment distribution beyond the mean and variance. The first problem is to find the 

expected value of the maximum of a random walk with small, negative drift, and the 

second problem is to find the distribution of the same quantity. Since Brownian motion 

is skip-free, the idea to replace the risk process by a Brownian motion ignores the 

presence of the overshoot and other things. The objective of the corrected diffusion 

approximation is to take this and other deficits into consideration. Another 

inconvenient of the diffusion approximation is that   is close to zero, and we want to 

consider the given risk process with more safety loading.  
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